Hepatitis C virus nonstructural protein 5A (NS5A) is an RNA-binding protein.
نویسندگان
چکیده
Hepatitis C virus (HCV) nonstructural protein 5A (NS5A) has been shown to antagonize numerous cellular pathways, including the antiviral interferon-alpha response. However, the capacity of this protein to interact with the viral polymerase suggests a more direct role for NS5A in genome replication. In this study, we employed two bacterially expressed, soluble derivatives of NS5A to probe for novel functions of this protein. We find that NS5A has the capacity to bind to the 3'-ends of HCV plus and minus strand RNAs. The high affinity binding site for NS5A in the 3'-end of plus strand RNA maps to the polypyrimidine tract, an element known to be essential for genome replication and infectivity. NS5A has a preference for single-stranded RNA containing stretches of uridine or guanosine. Values for the equilibrium dissociation constants for high affinity binding sites were in the 10 nM range. Two-dimensional gel electrophoresis followed by Western blotting revealed the presence of unphosphorylated NS5A in Huh-7 cells stably expressing the subgenomic replicon. Moreover, RNA immunoprecipitation and NS5A pull-down experiments showed the capacity of replicon-derived NS5A to bind to synthetic RNA and the HCV genome, respectively. Deletion of all of the casein kinase II phosphorylation sites in NS5A supported stable replication of a subgenomic replicon in Huh-7. However, this derivative could not be labeled with inorganic phosphate, suggesting that extensive phosphorylation of NS5A is not required for the replication functions of NS5A. The discovery that NS5A is an RNA-binding protein defines a new functional target for development of agents to treat HCV infection and a new structural class of RNA-binding proteins.
منابع مشابه
The hepatitis C viral nonstructural protein 5A stabilizes growth-regulatory human transcripts
Numerous mammalian proto-oncogene and other growth-regulatory transcripts are upregulated in malignancy due to abnormal mRNA stabilization. In hepatoma cells expressing a hepatitis C virus (HCV) subgenomic replicon, we found that the viral nonstructural protein 5A (NS5A), a protein known to bind to viral RNA, also bound specifically to human cellular transcripts that encode regulators of cell g...
متن کاملNS5ATP9 Contributes to Inhibition of Cell Proliferation by Hepatitis C Virus (HCV) Nonstructural Protein 5A (NS5A) via MEK/Extracellular Signal Regulated Kinase (ERK) Pathway
Hepatitis C virus (HCV) nonstructural protein 5A (NS5A) is a remarkable protein as it clearly plays multiple roles in mediating viral replication, host-cell interactions and viral pathogenesis. However, on the impact of cell growth, there have been different study results. NS5ATP9, also known as KIAA0101, p15PAF, L5, and OEACT-1, was first identified as a proliferating cell nuclear antigen-bind...
متن کاملCoordination of Hepatitis C Virus Assembly by Distinct Regulatory Regions in Nonstructural Protein 5A
Hepatitis C virus (HCV) nonstructural protein (NS)5A is a RNA-binding protein composed of a N-terminal membrane anchor, a structured domain I (DI) and two intrinsically disordered domains (DII and DIII) interacting with viral and cellular proteins. While DI and DII are essential for RNA replication, DIII is required for assembly. How these processes are orchestrated by NS5A is poorly understood...
متن کاملNonstructural 5A Protein of Hepatitis C Virus Regulates Soluble Resistance-Related Calcium-Binding Protein Activity for Viral Propagation.
UNLABELLED Hepatitis C virus (HCV) is a major cause of chronic liver disease and is highly dependent on cellular proteins for virus propagation. To identify the cellular factors involved in HCV propagation, we recently performed protein microarray assays using the HCV nonstructural 5A (NS5A) protein as a probe. Of 90 cellular protein candidates, we selected the soluble resistance-related calciu...
متن کاملPhosphorylation of hepatitis C virus nonstructural protein 5A modulates its protein interactions and viral RNA replication.
The study of the hepatitis C virus (HCV) has been hindered by the lack of in vitro model systems. The recent development of HCV subgenomic RNA replicons has permitted the study of viral RNA replication in cell culture; however, the requirements for efficient replication of replicons in this system are poorly understood. Many viral isolates do not function as replicons and most require conserved...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 280 43 شماره
صفحات -
تاریخ انتشار 2005